2. Graphical Transformations of Functions

In this section we will discuss how the graph of a function may be transformed either by shifting, stretching or compressing, or reflection. In this section let c be a positive real number.

Vertical Translations

A shift may be referred to as a translation. If c is added to the function, where the function becomes $y=f(x)+c$, then the graph of $f(x)$ will vertically shift upward by c units. If c is subtracted from the function, where the function becomes $y=f(x)-c$, then the graph of $f(x)$ will vertically shift downward by c units. In general, a vertical translation means that every point (x, y) on the graph of $f(x)$ is transformed to ($\mathrm{x}, \mathrm{y}+\mathrm{c}$) or ($\mathrm{x}, \mathrm{y}-\mathrm{c}$) on the graphs of $y=f(x)+c$ or $y=f(x)-c$ respectively.

Horizontal Translations

If c is added to the variable of the function, where the function becomes $y=$ $f(x+c)$, then the graph of $f(x)$ will horizontally shift to the left c units. If c is subtracted from the variable of the function, where the function becomes $y=$ $f(x-c)$, then the graph of $f(x)$ will horizontally shift to the right c units. In general, a horizontal translation means that every point (x, y) on the graph of $f(x)$ is transformed to $(\mathrm{x}-\mathrm{c}, \mathrm{y})$ or $(\mathrm{x}+\mathrm{c}, \mathrm{y})$ on the graphs of $y=f(x+c)$ or $y=f(x-c)$ respectively.

Reflection

If the function or the variable of the function is multiplied by -1 , the graph of the function will undergo a reflection. When the function is multiplied by -1 where $y=f(x)$ becomes $y=-f(x)$, the graph of $y=f(x)$ is reflected across the $\mathrm{x}-$ axis.

On the other hand, if the variable is multiplied by -1 , where $y=f(x)$ becomes $y=f(-x)$, the graph of $y=f(x)$ is reflected across the y-axis.

Vertical Stretching and Shrinking

If c is multiplied to the function then the graph of the function will undergo a vertical stretching or compression. So when the function becomes $y=c f(x)$ and $0<c<1$, a vertical shrinking of the graph of $y=f(x)$ will occur. Graphically, a vertical shrinking pulls the graph of $y=f(x)$ toward the x -axis. When $c>1$ in the function $y=c f(x)$, a vertical stretching of the graph of $y=f(x)$ will occur. A vertical stretching pushes the graph of $y=f(x)$ away from the x -axis. In general, a vertical stretching or shrinking means that every point (x, y) on the graph of $f(x)$ is transformed to (x, cy) on the graph of $y=c f(x)$.

Horizontal Stretching and Shrinking

If c is multiplied to the variable of the function then the graph of the function will undergo a horizontal stretching or compression. So when the function becomes $y=f(c x)$ and $0<c<1$, a horizontal stretching of the graph of $y=f(x)$ will occur. Graphically, a vertical stretching pulls the graph of $y=f(x)$ away from the y-axis. When $c>1$ in the function $y=f(c x)$, a horizontal shrinking of the graph of $y=f(x)$ will occur. A horizontal shrinking pushes the graph of $y=f(x)$ toward the y-axis. In general, a horizontal stretching or shrinking means that every point (x, y) on the graph of $f(x)$ is transformed to ($\mathrm{x} / \mathrm{c}, \mathrm{y}$) on the graph of $y=f(c x)$.

Transformations can be combined within the same function so that one graph can be shifted, stretched, and reflected. If a function contains more than one transformation it may be graphed using the following procedure:

Steps for Multiple Transformations

Use the following order to graph a function involving more than one transformation:

1. Horizontal Translation
2. Stretching or shrinking
3. Reflecting
4. Vertical Translation

Examples: Graph the following functions and state their domain and range:

1. $f(x)=(x+2)^{2}-3$
basic function (b.f.) $=x^{2}, \leftarrow 2, \downarrow 3$

Domain $=(-\infty, \infty)$
Range $=[-3, \infty)$
2. $f(x)=-|x-3|+1$
b.f. $=|x|, \rightarrow 3$, reflect about x -axis, $\uparrow 1$

$$
\begin{gathered}
\text { Domain }=(-\infty, \infty) \\
\text { Range }=(-\infty, 1]
\end{gathered}
$$

3. $f(x)=-2 \sqrt{x+3}+1$
b.f. $=\sqrt{x}, \leftarrow 3$, stretch about y -axis $(\mathrm{c}=2)$, reflect about x -axis, $\uparrow 1$

4. $f(x)=(-2 x+1)^{3}-2$
b.f. $=x^{3}, \leftarrow 1$, shrink about x -axis $(\mathrm{c}=2)$, reflect about y -axis, $\downarrow 2$

Domain $=(-\infty, \infty)$
Range $=(-\infty, \infty)$
5. Let the graph of $f(x)$ be the following:

Graph the following problems:
a. $f(x)-3$

b. $f(x+1)$

c. $f(x-2)+1$

d. $-f(x+1)$

e. $f(-x)-2$

Transformations of the graphs of functions

$f(x)+c$	shift $f(x)$ up c units
$f(x)-c$	shift $f(x)$ down c units
$f(x+c)$	shift $f(x)$ left c units
$f(x-c)$	shift $f(x)$ right c units
$f(-x)$	reflect $f(x)$ about the y-axis
$-f(x)$	reflect $f(x)$ about the x -axis
$c f(x)$	When $0<c<1$ - vertical shrinking of $f(x)$ When $c>1$ - vertical stretching of $f(x)$ Multiply the y values by c
$f(c x)$	When $0<c<1$ - horizontal stretching of $f(x)$ When $c>1$ - horizontal shrinking of $f(x)$ Divide the x values by c

